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FOREWORD
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Aircraft Company and McDonnell Douglas Astronautics Company, Long Beach and
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SYNTHESIS AND EVALUATION OF POLYMERS FOR

USE IN EARLY WARNING FIRE ALARM DEVICES

by

N. R. Byrd

M. B. Sheratte

SUMMARY

The objective of this program was to synthesize polymers that can eventually

show a demonstrated capability of interacting with gaseous substances and

thereby effect a change in some electrical parameter of the polymer; this

interaction to be ultimately utilized in developing an early warning fire

detector. For this purpose, it had been proposed that poly(phenylacetylene),

poly(p-ni trophenyl acetylene), poly(p-formamidophenylacetylene), poly(p-

aminophenylacetylene), poly(ethynylferrocene), poly(ethynylpyridine), poly-

(ethynylcarborane), poly(ethynylnickelocene), poly(dicyanoacetylene) and a

polyene from 3, 6-dimethyldihydropyridazine be prepared and tested for their

response behavior with a number of gases.

All of the above-mentioned polymers were prepared, except for poly(nickel-

ocenylacetylene). The literature reported that nickelocene does not undergo

a Friedel-Crafts reaction (a necessary precursor to the preparation of the

ethynyl derivative), therefore the ethynyl derivative could not be prepared

by this route. An alternative method was tried, but it, too, was

unsuccessful. The next most difficult to prepare was poly(dicyanoacetylene);

the problem being the poor yield of monomer. The remaining polymers were

straightforward, usually starting with the ethynyl derivative and performing

an addition polymerization; except for the polyene from 3, 6-dimethyldi-

hydropyridazine. This latter polymer resulted from a condensation reaction

between glyoxal and 3, 6-dimethyldihydropyridazine. However, the resultant



polymer had considerable insoluble material and it was difficult to work with.

In the poly(phenylacetylene) series, this polymer was prepared first and the

other derivatives, namely, the nitro, formamido and amino prepared in this

sequence from the parent polymer. The poly(ethynylferrocene) and the

poly(ethynylpyridine) were prepared without too much difficulty, but the

poly(ethynylcarborane), although prepared from the monomer that analyzed very

well and was presumably of the correct structure, did not result in a polymer

that had a good analysis.

The thermogravimretric analysis data showed a good correspondence between

degree of conjugation, resonance interaction with aromatic appendage and lack

of -CH bonds in the polymer. Thus, poly(dicyanoacetylene), poly(ethynyl-

ferrocene) and poly(phenylacetylene) showed less than two percent weight loss

out to 200 0C (in air).

Of the polymers prepared, poly(phenylacetylene), poly(p-nitrophenylacetylene),

poly(p-formamidophenylacetylene), poly(p-aminophenylacetylene) and poly-

(ethynylferrocene) were the most responsive to various gases and to "fire

gas" conditions when they were coated on a lock-and-key electrode geometry.

Poly(dicyanoacetylene) was essentially nonresponsive and the other polymers

were minimally responsive. Thus, although poly(p-nitrophenylacetylene) was

most responsive to ammonia, it did not respond to CO or butadiene and poorly

to "fire gases:" while poly(ethynylferrocene) showed some response to CO and

butadiene but poor response to NH3, and was most responsive to "fire gases".

Futhermore, poly(ethynylcarborane), an electron-accepting polymer, also

showed a response to NH3 , while poly(ethynylpyridine) and poly(ethylidene-

pyridazine) responded to CO. From the data, it was observed that polymers

of varying electronegativity can be prepared and that their interaction with

gases will usually relate to their structure, e.g., NH3 with poly(p-nitro-

phenylacetylene) and poly(ethynylcarborane)and carbon monoxide with poly(ethynyl-

ferrocene), poly(ethynylpyridine)and poly(ethylidenepyridazlne).
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1.0 INTRODUCTION

The need for fire detection devices has a very high priority in all parts of

society whether it be aerospace, military, private dwellings, hotels, office

buildings or mines. For example, nursing home fires occur with relatively high

frequency; and private dwellings, although involving fewer individuals per

dwelling, also have a high incidence of fires. In addition to the loss of

lives, there is, of course, generally, a large loss in property.

The President's National Commission on Fire Prevention and Control, chaired

by Richard E. Bland, after a lengthy study relating to fires in various

dwellings, particularly nursing homes, issued a report in 1973 listing a number

of priorities regarding efforts to minimize fire hazards; and number two on that

list (after fire prevention) was the need for early warning fire detectors.

Thus, there is the constant problem of smoke or fire detection in order to save

lives and property in nursing homes, hospitals, private dwellings and aircraft,

among others. What is needed, therefore, is a sensor capable of monitoring

the atmosphere and rapidly detecting the presence of any contaminant buildup.

Recently, a large number of fire and/or gas detecting devices have been

brought into the market that are claimed to be able to detect fires either by

heat detection techniques or by gas (combustion products) detection methods.

In the former category are infrared sensors and low melting alloys. In the

latter are solid state devices and ionization detectors. By far, the most

popular are the solid state and ionization detectors; and of the solid solid

state type, the most widely used is the TGS gas-sensing semiconductor manufac-

tured by Figaro Engineering, Inc. of Osaka, Japan.

The uniqueness of operation of the TGS device is that it depends upon the

interaction of gases with certain metal oxide semiconductors, e.g., tin oxide,

zinc oxide and ferric sesquioxide, in conjunction with coils that are made

from an alloy of iridium and palladium and that have a resistance of approxi-

mately two ohms. The response speed, when gases, such as carbon monoxide,

hydrogen or hydrocarbons are adsorbed, is claimed to be quite fast under

specific temperature conditions (200°C to 4000C) (Reference 1). However, no

specificity exists. All electronegative gases give one type of response and all
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electropositive gases give another; there is little differentiation within

each class of gases. Another drawback is the high temperature used in the

operation of the sensor. This, alone, could be a fire hazard in an incipient

fire environment.

A promising approach that could obviate the difficulties of the other tech-

niques is a solid state device that uses polymeric organic semiconductors,

either alone or in conjunction with an inorganic semiconductor. Polymeric,

film-forming organic semiconductors, e.g., substituted polyacetylenes

(polyphenylacetylene and it- derivatives), among others, have been used as

materials for a solid-state sensor (Reference 2). They act as semiconductors,

and can also be chemically modified so that the effect of substituents,

on their conduction and complexing capability, can be observed. The basic

principle upon which the polymeric organic semiconductors depend for their

detection capability is a relationship between their electronegativity, adsorp-

tion characteristics, complexing behavior, and a change in some of their

electrical parameters.

Thus, the purpose of this program was to select and synthesize ten polymeric

semiconductors which have varying electronegativity, and the capability of

forming films. These semiconducting polymer films were to be deposited on

a lock-and-key type of electrode sensor and checked for their gas response

behavior. In addition, the polymers prepared were to be evaluated by thermo-

gravimetric analysis (TGA) and isothermal (35'C) gravimetric analysis in order

to establish their long term stability and feasibility for use as possible fire

detectors in a fire environment.

In essence, the synthesis of poly(phenylacetylene) (I), poly(p-nitrophenyl-

acetylene) (II), poly(p-formamidophenylacetylene) (III), poly(p-aminophenyl-

acetylene) (IV), poly(ethynylferrocene) (V), poly(ethynylpyridine) (VI),

poly(ethynylcarborane) (VII), poly(dicyanoacetylene) (VIII), poly(ethynyl-

nickelocene) (IX), and a polyene from 3, 6-dimethyl-dihydropyridazine

(X) was attempted. Figure 1 depicts the structures of polymers I-IV, and

Figure 2 shows the structures of polymers V-X. Those polymers that were film

formers were then evaluated for their response to carbon monoxide, acrolein,

butadiene, ammonia, water vapor and the gases from a smoldering cellulosic fire.
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2.0 SELECTION OF SEMICONDUCTING POLYMERS

2.1 TYPES OF POLYMERS CONSIDERED FOR DETECTION

The concept behind the development of an early warning fire detector is

basically to use organic semiconductors of varying electronegativity so that

gases generated by an incipient or smoldering fire, e.g., carbon monoxide,

hydrocarbons and water vapor, among others, would be detectable by at least

three of these semiconductors in order to have a fire detector. Normally, a

multiplicity of detectors would be used since a fire, or smoldering incipient

fire, would contain a number of gases, and to have high specificity and

minimize false alarms, a sensor specific for each of these gases should be

available. However, as a first approximation, a sensor for CO, a hydrocarbon,

and water vapor should be sufficient for detection of an incipient fire.

Therefore, in addition to the electronic aspect of the early warning fire

detector, of equal importance are the materials to be used as coatings on the

particular electrode geometry; for it is the chemical structure of these

materials upon which the specificity for the particular gas or combination

of gases is dependent. In other words, if one were to be detecting ammonia,

and since ammonia is an electropositive gas, one would use an electronegative

substance with which it could form some type of complex. This could readily

be poly(p-nitrophenylacetylene) (II), for example, as has been adequately

demonstrated (Reference 2). Alternatively if one were trying to detect an

electronegative specie, e.g. an aldehyde, an electropositive polymer would be

used for detection purposes, such as, poly(p-aminophenylacetylene) (IV) or

poly(ethynylpyridine) (VI).

There are many other organic polymers that have been shown to possess a semi-

conducting capability, but they are, generally, intractable substances having

no capability for being fabricated other than in the form of pressed discs.

However, during the course of this program, intrinsic polymeric semiconductors

of the polyacetylene type having film-forming capability with varying electro-

negatives have been developed.

The feasibility of developing a solid state gas detector was first investi-

gaged under contract NAS12-15 for the NASA Electronics Research Center,

Cambridge, Massachusetts (Reference 2). Poly(phenylacetylene) (I) and some

of its derivatives (polymers II - IV) were synthesized and evaluated for gas/
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polymer interaction effects. The present program further expanded this effort

by also synthesizing polymers V - X. Polymers I-IV were again prepared, and

reevaluated for their response to NH3 [as in NAS12-15 (Reference 2)], as well

as to carbon monoxide, acrolein, butadiene, acetylene, water vapor and "fire

gases" from smoldering cellulose. Similarly, V - VIII and X were examined under

the same conditions. Polymer IX could not be prepared and consequently was

not evaluated.

2.2 RATIONALE FOR CHOICE

Intrinsically, most organic semiconductors have comparatively low conductivity,

and it may be that this is what we want, as will be seen later. To increase

the conductivity, either the temperature is raised or a complex is formed.

In complex formation, one component is an electron-donating substance and

another is an electron-attracting material; chloranil/p-phenylenediamine or

anthracene/iodine complexes being representative examples. Although the exact

mechanism of conduction in the charge-transfer complex is not explicit,

it is presumed to be the sharing of electrons, which, in effect, tends to

remove electrons from the sphere of the electron donor. This delocalization of

electrons subsequently results in a smearing out of the electron cloud through-

out the complex which, in turn, can more readily result in a p-or n-type semi-

conductor. In other words, once the complex is formed, the electrons are

more easily excited to an activated singlet or triplet state with consequent

availability for electronic conduction.

In order to elucidate the concept of electron delocalization in a conjugated

system, let us examine the structure of butadiene. The double bonds involve

pi-bond orbitals which consist of an unpaired electron in a p-orbital perpen-

dicular to the molecular axis. It is the interaction of these perpendicular

p-orbitals that forms the pi orbital, or what the chemist calls, "a double

bond." Figure 3 depicts the bonds in the butadiene molecule showing the sigma

and pi bonds, and the resultant "streaming" effect due to the pi bonds. This

electron delocalization (uniform distribution of the electron cloud over the

entire molecule) occurs in all organic semiconductors whether simple charge-

transfer or polymeric. If one now considers the simplest polyene, a poly-

acetylene, as shown in Figure 4a, (its structure is shown in the form of
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"streamer" electrons, Figure 4b) it can be seen that there is no localization

of electrons, and that they are theoretically capable of being readily dis-

placed in an electric field. Another factor related to the delocalization of

electrons is the greater possibility for complexing with gaseous "contaminants,"

i.e., gas/polymer interaction effects.

One of the uncertainties regarding the mechanism of conduction in organics is

that little is known about the effect of "impurities" on the conducting

species. For example, Labes, et al., found that the bulk dark conductivity

of anthracene was increased when exposed to iodine vapor and was dependent upon

the pressure of iodine [a change in pressure of 30 mm caused an increase in

conductivity by one order of magnitude (Reference3)], and p-chloranil, in the

presence of amine vapors, also showed an increase in its bulk dark conductivity

(Reference 4). Others have also shown that impurities can affect the conductivi-

ty of these organic compounds, and it is the very nature of this problem, namely,

the change in conductance due to impurities, which allows us to consider using

organic semiconductors as detectors for gaseous products to be found in fires.

Let us now examine how this behavior applies to our program.

It is fairly well recognized that surface bonding consists of both physical

and chemical bonds. Physical bonding results from van der Waals interactions

between the gas molecule and the surface and there are usually lower heats of

adsorption involved than in chemisorption. In addition, surfaces are rough,

both at tile microstructure level and in higher dimensions. Thus, in a

porous rough surface adsorbed molecules come into more intimate contact with

more atoms of the adsorbent that if the surface were a smooth plane; and these

cracks and crevices in the rough surface appear to have more "active sites"

for van der Waals adsorption (Reference 5). The chemical contribution to

bonding concerns itself with chemisorption phenomena caused by an exchange or

sharing of electrons between the binding molecule and the substrate.

If we consider.the adsorption of olefins on a catalyst surface, then in the

case of ethylene or acetylene, where an adsorbed molecule becomes attached to

a metallic surface, such as nickel or platinum, the pair of electrons in the pi-

bond separate and each electron pairs up with an electron from the metal
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surface (Reference 6). Thus,normal covalent bonds of varying bond strengths

may be formed during the chemisorption process when this electron pairing

occurs. In addition, coordinate links between molecules having at least one

pair of electrons (and acting as an electron donor), and metal surfaces which

are acting in an electronegative manner with respect to these compounds,

may also lead to chemisorption of these molecules. This can be seen in Figure

5 for the cases of dimethyl sulfide, arsine and pyridine with nickel, platinum

and palladium, respectively (Reference 7). It has also been found that the

strength of adsorption in any system depends both on the gas and on the metal,

and it is possible to have a number of gases in sequence such that any one is

more strongly adsorbed by any metal than the ones succeeding it, as shown

(Reference 8):

0 2 C2H2 >C 2 H4>CO>H2 >CO2 >N 2

It is readily observable from the sequence that the greater availability of

electrons, (either from a diradical such as oxygen, high electron density

in acetylene, or easy separation into atomic species (on a metal surface) as

in hydrogen) is the factor which establishes its capability of forming a

complex with an electronegative surface.

At this point, let us extrapolate the action on metal surfaces to that of an

organic semiconductor, keeping in mind the fact that a conjugated polymer

may potentially be a "metallic" conductor or semiconductor. The semiconducting

material in question here will be the bonding surface and the feasibility of

its action as a probe for contaminant detection will be shown.

Consider a polymer with a conjugated polyunsaturation in its backbone, having

either electron-widhdrawing or electron-donating side groups, X:

H

R

X n
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In the one instance, X is electron-withdrawing and R is a conjugated moiety

capable of allowing X to exert its influence on the conjugated backbone.

Call this polymer, A. In another instance, X is electron-donating. Call

this polymer, B. In a third-instance, there is a polymer with no electron-

withdrawing or electron-donating group on R. Call this polymer, C. If a

potential were impressed on A, B or C, the conductivity would be in the

order

A<C<B

and would be the beginning of a series of polymers with different electro-

negativities. Other criteria considered were that the polymer chosen should be

capable of effecting a change in some electrical parameter in order to be

able to detect the presence of a gas through this change. In addition, the

polymer should be able to be deposited as a film, be oxidatively and thermally

stable and not hygroscopic. And it was on the basis of this rationale that

we chose the various polymers used in this program.

Once the aforementioned criteria had been established for the overall class of

polymers, i.e., conjugated polyenes, other factors were considered with

regard to the choice of the individual polymers. Polymers I-IV were given

primary consideration because their synthesis had been well characterized and

they had previously been used in the development of a gas detector (Reference

2), but had not heretofore been used under smoldering fire conditions.

Polymers V-X were also considered because in most instances their synthesis

had been well-documented in the literature. In addition, they represented

either electropositive polymers, such as polymers VI and X, or electronegative

substances, such as polymers VII and VIII. Polymers V and IX were considered

because of their potential for complexing with gases via d-orbital electrons

in the metal atoms.

Since the synthesis and rationale for polymers I-IV have been adequately

described elsewhere (Reference 2), it is of interest to examine the synthesis

and rationale for choosing polymers V-X. The synthetic route to poly(ethynyl-

ferrocene) (V) was through the monomer ethynylferrocene, which had to be

prepared first.
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Ethynyl ferrocene was prepared from acetyl ferrocene according to thile procedure

described by Rosenblum (Reference 9).

I. CIOHIOFe (Ferrocene) + CH3 COCI AI-C 3 FeCIOH 9 COCH3

2. FeCIOH 9 COCH 3 + HCONMe2 + POCI- FeC IO H9 CHCI= CHCHO

3. FeCIOH 9 CHCI = CHCHO + NoOH---FeCI1OH9C CH

and was reported to polymerize with benzoy! peroxide as the catalyst

(Reference 10). The polymer was found to have an electrical resistivity

around 1010 ohm - cm (Reference 10). This polymer would probably be electro-

positive and might show interesting complexing behavior with aldehydes, or

possibly even hydrocarbons, either saturated or unsaturated, through d-orbital

electrons of the iron atom.

For the preparation of poly(ethynylpyridine) (VI), Okamoto and Alia (Reference

11) have reported the preparation of the c6, o and Y -pyridylacetylene from the

corresponding acetylpyridine derivative. Although the yields were low, they

obtained enough to study the polymerization characteristics and report on

their electrical properties. Another method of preparation may also be via

halogenation and dehydrohalogenation of the corresponding vinylpyridine. The

resultant poly(ethynylpyridine) (VI) should be useful for detection of such

substances as aldehydes and other electronegative substances.

Originally, it was thought that B - phenyl - B' - ethynyl carborane would be

prepared via the following series of reactions:

I. BIOC 2 H12 (Corborone) + OR- + 2ROH --,6 C2 H12 + B(OR) 3 + H2

2. B9 C2 H1 + H- - B9 C2 HII + H2

3. B9 C2 H + C6 H5 BCI 2 - C6H BIOC 2 HII + 2CI-

4. C6H5BI C2HII + OR- + 2ROH - C6 H5 BgC 2HI- + B(OR) 3 + H2

5. C6 H5 B9 C2 HI- + H-- C6 H5B 9 C2 HIo+ H2

6. C6 H5 B9 C2 HIO + CHCI= CH - BCI 2 -4- C6 H5 (CHCI = CH) B IO C2 H IO + 2CI-

7. C6 H5 (CHCI= CH) BIOC 2HIO + Base -- C6 H5 ( C-C) BIO C2HIo
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Reactions 1-5 are known and have been reported by Sheratte (Reference 12).

Furthermore, 2-chlorovinylboron dichloride is known (Reference 13) having been

prepared by the carbon catalyzed reaction of boron trichloride with acetylene.

However, it was subsequently learned that a C - ethynyl carborane can be easily

prepared by the following route (References 14 and 15):

BIOHIO * 2X + HC- C-C = CH---BIOC 2 HII CECH

[BIOHIO *2X= Decorborane bis-X (X=Acetonitrile, Me2 S, E+2 S, etc.]

and it was this approach that was used. The first step was to obtain the

butadiyne and then react this with decarborane. Polymer VII was expected to

be quite interesting as an electronegative polymer and useful for electro-

positive gases, e.g., ammonia, CO, etc.

For the preparation of poly(dicyanoacetylene) (VIII) Byrd (Reference 16),

followed the technique described by Moureu and Bongrand (Reference 17) and

prepared dicyanoacetylene monomer from acetylene dicarboxamide. The yields

are very poor. Its polymerization by anionic catalysts had been studied by

Benes, et al. (Reference 18) and it was found to polymerize quite readily.

Theoretically, the resultant polymer should be extremely interesting as a

gas complexing agent as it is very strongly electronegative. Thus, it was

thought that even hydrocarbons might complex with this polymer.

To prepare poly(ethynylnickelocene) (IX), it was originally planned that the

ethynyl derivative of nickelocene would be prepared, analogously to ethynyl-

ferrocene. However, it has been reported that nickelocene does not undergo

a Friedel-Crafts reaction (Reference 19), so in view of this, an alternative

method was considered. This polymer should be similar to poly(ethynylferrocene)

(V) in its complexing capability. The major difference being that the nickelo-

cene polymer should be easily oxidized to the nickelocenium ion and therefore

potentially more capable of complexing with electropositive species.
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Overberger and Byrd had previously reacted piperonal with the oxidized

product of 3,6-dimethyl -1, 2-dihydropyridazine, viz., 3,6-dimethylpyridazine

(Reference 20) and obtained a derivative having carbon-carbon double bonds.

It was found that the oxidized compound, e.g., the pyridazine, reacted with

piperonal at the methyl groups. It was decided, for this program, that 3,

6-dimethyl-l, 2-dihydropyridazine be treated with dimethylsulfate to obtain

the N-methyl derivative and that this compound be treated with glyoxal to

get the polyene, as follows:

H-H- ('CH-CH.
,.H- .H. Dimethyi- CH _. C

CH3 -C C-CH3 S CH 3 - C "  C-CH3NH NH/ Sulphate - NNH-NH N-N

CH3  CH3  O = CHCH =O

CH-CH

-CH =CH - C C-CH = CH--
N-N

Me Me
X n

This polymer should be strongly electropositive and capable of forming

complexes with aldehydes, thereby potentially being a very good detector for

aldehydes.
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3.0 EXPERIMENTAL

A number of methods exist for the preparation of conjugated polyenes; notable

among them being the polymerization of ethynyl monomers. However the

preparation of the monomer and, in some cases the polymer, frequently results

in poor yields and/or difficultly isolable products. Thus, aside from the

preparation of the poly(phenylacetylene) class of polymers (polymers I-IV)

[Which had been well documented elsewhere (Reference 2)], the synthesis of the

other polymers called for in this program, in many instances, resulted in

low, or no, yield of material. Once prepared, though, regardless of yield,

they were all subjected to characterization studies consisting of viscosity

measurements, spectroscopic analyses, thermogravimetric analyses, and gas/

polymer interaction effects, as determined by changes in electrical conductance.

This section will, therefore, contain only experimental methods, while Section

4 will consist of a detailed discussion of the results.

3.1 Synthesis of Polymers

The first task undertaken in this program dealt with the preparation and

evaluation of poly(phenylacetylene) (I), poly(p-nitrophenylacetylene) (II),

poly(p-formamidophenylacetylene) (III), and poly(p-aminophenylacetylene) (IV).

This group of polymers derives from poly(phenylacetylene) and Figure 1 shows

the reaction scheme used in preparing them. The next group studied was

polymers V - X; none of these being related to each other in the synthesis

sequence, as were I-IV.

3.1.1 Poly(phenylacetylene) (I)

Poly(phenylacetylene) (I) was prepared by mixing 75g of phenylacetylene

(ethynylbenzene), 200 ml carbon disulfide and 0.5 g alur-inum chloride,

under nitrogen. An exotherm resulted within two hours bringing the temperature

up to 420 C and the exotherm maintained reflux for 1 1/2 hours further.

When the mixture started to cool, heat was applied and refluxing continued

overnight. The resulting mixture was poured into 1200 ml of isobutanol and a

dark tan precipitate, weighing 45 g, was obtained. The softening point

of this material (in a capillary tube) was 210-2250C.
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Analysis for poly(phenylacetylene):

Calc. for C8H6: C = 94.11, H = 5.88

Found: C = 94.02, H = 6.04

3.1.2 Poly(p-nitrophenylacetylene) (II)

Fifty grams poly(phenylacetylene) (I) were dissolved in 120 ml of red fuming

nitric acid at 00 C and allowed to react at this temperature for one hour.

Ice was added to the solution to precipitate the polymer. The mixture was

filtered, washed with water until the washings were neutral, washed with

alcohol and dried in a vacuum oven at 500C. Yield was 70 g. Although the

elemental analysis of the resultant poly(p-nitrophenylacetylene) (II) shows

a low carbon, the hydrogen and nitrogen are excellent. It should be noted that

aside from polymers prepared by polymerization of monomer, e.g., phenylacetylene,

most polymers that are derivatives prepared via reactions run on a polymer

will tend to have poor analyses. This, of course, is most likely due to

difficulties in controlling reactions on polymers as well as the difficulty

in purifying the product, as compared to a low molecular weight organic

compound. Thus, such things as overnitration and/or, oxidation could have

occurred here to result in the poor analysis. It is difficult to know to

what to attribute the poor carbon analysis.

Analysis for poly(p-nitrophenylacetylene):

Calc. for C8 H5N02: C = 65.31, H = 3.40,N = 9.52

Found: C = 58.81, H = 3.34, N = 9.53

3.1.3 Poly(p-formamidophenylacetylene) (III)

Poly(p-formamidophenylacetylene) (III) was prepared by the reduction of II.

Ten grams of II were dissolved in 60 ml dimethylformamide (DMF) followed by

a solution of 35 g anhydrous stannous chloride in 75 ml DMF plus 45 ml

concentrated HC1. The mixture was heated to 1000C for five hours, cooled and
poured into 500 ml of H20 made basic with concentrated NH40H. The precipitate
was filtered, washed with water and dried. The mixture of polymer and tin
salts was extracted with DMF, the extract filtered and then precipitated into
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water made basic with ammonium hydroxide. The precipitate was filtered,

washed with water and dried to yield 7.3g of a black powder.

Analysis for poly(p-formamidophenylacetylene):

Calc. for CgH 7NO: C = 74.48, H = 4.83, N = 9.66

Found: C = 71.96, H = 5.13, N = 11.01

The discrepancies found in this analysis might be explained in similar fashion

as was discussed for the nitro polymer (II).

3.1.4 Poly(p-aminophenylacetylene) (IV)

The poly(p-formamidophenylacetylene) (III) was converted to poly(p-amino-

phenylacetylene) (IV) by hydrolysis of III with concentrated hydrochloric

acid.

Analysis for poly(p-aminophenylacetylene):

Calc. for C8H7N: C = 82.05, H = 5.87, N = 11.97

Found: C = 77.72, H = 5.87, N = 10.33

3.1.5 Poly(ethynylferrocene) (V)

In the preparation of poly(ethynylferrocene) (V), the monomer had been

adequately described elswhere (Reference 9), so little difficulty was

anticipated. However, it was found that certain precautions had to be taken

in the purification steps or the yield and type of polymer would be poor.

Once the purification procedure was established, the preparation and purity

of the polymer followed accordingly.

To prepare the poly(ferrocenylacetylene) (poly(ethynylferrocene) it was

first necessary to prepare ethynylferrocene.

Acetylferrocene (obtained from Research Organic Corp., Sun Valley, Calif.)

was first converted to l-chloro-2-formyl-vinylferrocene then to ethynylferro-

cene and finally to poly(ethynylferrocene) (V).

A solution of 6 ml phosphorous oxychloride in 200 ml dimethylformamide (DMF)

was prepared by adding the POC13 slowly to the DMF at OOC under nitrogen.
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The vigorous exotherm was controlled with an ice-salt bath.

Acetylferrocene (46g) was dissolved in 200 ml DMF and this was added to the

POC1 3 solution in DM4F at 00C with stirring under nitrogen. (The published

procedure recommends adding the POC13 solution to the acetylferrocene, but

this results in a sticky solid that has to be purified within a day or two or

it suffers extensive decomposition.)

After all the acetylferrocene had been added (appproximately 30 minutes), the

resultant blue solution was held at O°c for a half hour and then allowed to

warm to room temperature under nitrogen. A solution of 350g sodium acetate in

1000 ml water was added and the mixture stirred under nitrogen overnight.

(CAUTION: The addition of the first 100 ml, or so, of this solution is strongly

exothermic!)

Before extraction of the product with methylene chloride, the aqueous layer

was saturated with salt. This gave a separation of layers that was quite

readily seen. No attempt was made to wash the DMF out of the methylene

chloride extract (a procedure recommended in the literature) (Reference 9).

Instead, the methylene chloride was stripped out under vacuum, and the

resultant deep red solution poured into excess saturated sodium chloride

solution. The 1-chloro-2-formyl-vinylferrocene precipitated as glistening

deep red needles which were sufficiently pure to be stored indefinitely and

could be used in the next step of the synthesis without further purification.

Figure 6 depicts the structure of the 1-chloro-2-formyl-vinylferrocene.

Analysis for l-chloro-2-formyl-vinyl ferrocene:

Calc. for C13H1 1Fe Cl 0: C = 56.87, H = 4.01, Cl = 12.92, Fe = 20.36

Found: C = 56.98, H = 4.21, Cl = 12.81, Fe = 20.01

Ethynylferrocene was prepared by dissolving 4.8g of 1-chloro-2-formyl-vinyl-

ferrocene in 150 ml dioxane, heating to reflux under nitrogen, adding 100 ml

of 0.514 NaOH, and boiling the mixture under nitrogen for ten minutes. After
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this time, the hot solution was poured over 500g ice. The resultant mixture

was saturated with salt and exhaustively extracted into ether. After drying,

removal of the ether left three grams of a deep red oil. Chromatographic

purification on alumina using benzene as eluant gave 2.4 g of pale yellow,

pasty crystals melting at 500 to 530C [(Literature: 52.50 (Reference 9)]

It has been found that the slow decomposition of ethynylferrocene is caused

by traces of impurity. This impurity can best be removed by repeated

chromatography on alumina, using hexane as eluant. The leading band is

ethynylferrocene, followed very closely by the impurity. By rejecting the

last 10% of the band, a sample has been obtained as orange hexagonal

crystals, mp. 530C. This procedure uses hexane as an eluant instead of

benzene; and the product has been stable without showing any tendency to

decomposition.

Analysis for ethynylferrocene:

Calc. for C12H10 Fe: C = 68.62, H = 4.77, Fe = 26.61

Found: C = 68.70, H = 4.86, Fe = 26.67

Polymerization of this material for 8 hours at 1900C in the presence of

benzoyl peroxide leads to a polymer that is almost completely soluble in

benzene.

Analysis for poly(ethynylferrocene):

Calc. for C12H10 Fe: C = 68.62, H = 4.77, Fe = 26.61

Found: C = 68.62, H = 4.86, Fe = 26.39

3.1.6 Poly(ethynylpyridine) (VI)

Ethynylpyridine, used in the preparation of poly(ethynylpyridine) (VI), was

also prepared from a known procedure (Reference 21). The major difficulty

here lay in the instability of the 1-(4-pyridyl)-2-bromoethylene and vessicant

action of this compound. The preparative route used for VI was that from the

bromination of 4-vinylpyridine to the dehydrobromination and on to the poly-

merization of the ethynyl derivative. The ethynylpyridine was subsequently

converted to the corresponding polyacetylene derivative.
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4-Vinylpyridine hydrochloride (105g, 0.74 mole) was suspended in 500 ml

chloroform and cooled to 00 C. Bromine (82 ml, 1.5 mole) was added so that

the temperature remained below 00 C. After the addition was complete (about

35 minutes), the mixture was stirred at 00 C for 1 hour and then allowed to come

to room temperature over the next two hours.

About 300 ml ether was added, causing the separation of an orange oil. The

supernatant was decanted and the oil was washed with more ether. Finally,

about 500 ml acetone was added slowly (causing a moderate exotherm and the

generation of a strong lachrymator), and the oil slowly solidified under

the acetone to a pale yellow powder, m.p. 146-150 0C (Gray) (Reference 21)

gives m.p. 148-1500C. The yield was essentially quantitative.

Sixty three grams of the above dibromo salt were dissolved in 1000 ml water,

and treated with sodium carbonate until basic. The mixture was then extracted

with ether, and after drying over magnesium sulphate, the ether layer was

concentrated to 350 ml. A solution of 22g triethylamine in 100 ml tetrahydro-

furan was added and the mixture was stirred under nitrogen for two hours at
room temperature and then 1 1/2 hours at reflux temperature.

The black precipitate of triethylamine hydrobromide was removed by filtration.

Evaporation of the solvents left a mixture of a pale tan solid product and
some excess triethylamine, which was washed out of the product using pentane.

The yield of l-(4-pyridyl) -2-bromoethylene was 41g (87%).

After numerous attempts at dehydrobromination of l-(4-pyridyl)-2-bromoethylene

to obtain tie ethynylpyridine, it was found that the product depended upon
the length of time the bromoethylene derivative was kept before further
reaction. It appears that this compound is very unstable. Even if stored at
00 C, and a 24 hour period elapses between its preparation and subsequent

dehydrobromination, the yield of 4-ethynylpyridine is drastically reduced.
Furthermore, if held at 40-500C for about 1/2 hour, an exothermic polymeri-
zation occurs.
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[NOTE: An important word of caution is put forward to those who wish to

investigate the synthesis and reactions of the l-(4-pyridyl)-2-bromo-

ethylene. It is a virulent vessicant, and great care should be exercised in

handling it.]

A mixture of 50g paraffin wax and 60g powdered potassium hydroxide was

placed in a 500 ml flask equipped with a stirrer, powder addition funnel,

thermometer and Claisen take-off head. The Claisen head was connected

directly to a flask which was immersed in a dry ice/freon mixture and connected

to a vacuum pump. The entire apparatus was evacuated to 200 mm, and the wax/

potassium hydroxide mixture was heated to 160 0C by immersion of the flask

in an oil bath held at that temperature.

Crude 1-(4-pyridyl) -2-bromoethylene was placed in the funnel and admitted

in small portions to the reaction flask. After each addition, the temperature

in the flask rose considerably. The pressure was held at 200 mm for 2 minutes

after each addition, and then slowly lowered to 4 mm while the product distilled

and was collected in the recovery flask. The pressure was then raised to

200 mm again, using a nitrogen bleed, and a second batch of reactant was

admitted.

After 41g crude 1(4-pyridyl) -2-bromoethylene had been so treated, about

6g product had distilled.

The ethynylpyridine was thermally polymerized to a black solid by heating

under nitrogen at 150 0C for 20 hours. The polymer was soluble in methanol,

but after 2-3 days exposure to air, it was only soluble in glacial acetic

acid.

Analysis for poly(ethynylpyridine):

Calc. for C7H5N: C = 81.55, H = 4.85, N = 13.59

Found: C = 83.20, H = 6.09, N = 10.59

Poor analysis might be attributable to product being an acetate salt.
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3.1.7 Poly (C-ethynylcarborane) (VII)

1,4-Dichloro - 2-butyne (30g) was converted into butadiyne using the method

of Herbertz (Reference 22). The butyne was dissolved in 250 ml ethanol and

2g pyridine added. The solution was placed in a 500 ml flask, under nitrogen,

and 100lg of 40% sodium hydroxide were added slowly with stirring, so that

the temperature remained below 500C.

The addition took one hour, and butadiyne evolved continually during this

time. When all the sodium hydroxide had been added, the temperature was

raised to 80 0C for 1 hour further, while the apparatus was swept with nitrogen.

The butadiyne was passed through two dilute sodium hydroxide wash bottles, and

dried over calcium sulphate before being condensed in a dry ice/freon cold

trap.

The yield from 30g dichlorobutyne was 10g.

Decarborane (25g) was dissolved under nitrogen in 200 ml refluxing aceton-

itrile. After about one hour, the bis-acetonitrile complex of decarborane

began to precipitate. Refluxing was continued overnight to yield a suspension

of the bright yellow complex.

The O1g butadiyne were dissolved in 50 ml acetonitrile, and added slowly to

the refluxing decarborane bis-acetonitrile suspension. The mixture was

heated at 800C for four hours, yielding a dark yellow cloudy solution.

The solvent was then stripped out, and the pasty residue treated with ether,

in which most dissolved. The ether solution was dried over magnesium

sulphate, and stripped to dryness after filtration. The yellow pasty residue

was dissolved in pentane and cooled to -800C, when white crystals of C-ethynyl

carborane separated.

The yield was 12g, m.p. 72-760 F. [Hawthorne (Reference 15) gives 75-78 0C].
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Analysis for C-ethynyl carborane:

Calc. for C4 B10H12: C = 28.57, H = 7.14, B = 64.29

Found: C = 28.38, H = 7.28, B = 64.57

The C-ethynyl carborane was thermally polymerized under nitrogen at 130
0 C for

20 hours. The resultant golden yellow polymer had a softening range from

45-150 0C and was soluble in methanol. Using benzoyl peroxide as a catalyst,

an apparently higher molecular weight material was prepared with a

softening point of over 1000C.

Analysis for poly(ethynylcarborane):

Calc. for C4 B10H12: C = 28.57, H = 7.14, B = 64.29

Found: C = 24.09, H = 6.70, B = 47.76

It is difficult to understand this poor analysis other than some possible

oxidation and loss of boron.

3.1.8 Poly(dicyanoacetylene) (VIII)

Concentrated ammonium hydroxide (400 ml) and methanol (300 ml) were cooled

to -200C, and diethylacetylene dicarboxylate (100g) was added dropwise with

vigorous stirring so that the temperature remained below -10
0 C. The addition

took about five minutes. Stirring was continued without cooling for one hour,

during which time the temperature of the mixture rose to 15
0 C. The product

was filtered, washed with a little water, and then with 50 ml ice cold

methanol and dried under vacuumi. The yield was 55g (97%) of the acetylene

dicarboxamide.

An apparatus was constructed by joining short lengths of 8 mm glass tubing to

the bottom of a 500 ml Erlenmeyer flask. Each length of tubing passed through

a rubber stopper which was plugged into the neck of a 20 mm test tube. The

neck of the Erlenmeyer was closed by a rubber stopper through which passed a

length of 8 mm tubing, which led to two traps in series, and ultimately a

vacuum pump.

An intimate mixture was prepared of 12g acetylene dicarboxamide, 200g sand

and 100g phosphorus pentoxide. The mixture was distributed among eight test

21



tubes which were evacuated and flushed with nitrogen two or three times,

before finally being evacuated to 2 mm. The two traps were immersed in dry

ice/freon, and then the eight tubes containing the amide mixture were simul-

taneously plunged into an oil bath preheated to 215 0C.

After 15 minutes, most of the product had collected in the first trap, with a

very small amount in the second trap. Twenty ml tetrahydrofuran were added

to each trap and the dicyanoacetylene was washed directly into an addition

funnel, from which it was added slowly to approximately 0.05 g n-butyl

lithium in hexane at -700C under nitrogen. During the addition, the solution

temperature rose to -500C, and the mixture started to darken. About one hour

after the addition was complete, the temperature had fallen to-700 C again,

and the solution was black. The product was allowed to come to room tempera-

ture, and removal of the solvent left about 2g black solid.

The preparation of dicyanoacetylene and the polymer have been well documented

(References 16-18).

Although the polymcrization goes almost quantitatively, the overall yields

of polymer from the diamide are poor. The difficulty is in the preparation of

the monomer. In addition, it appears that the polymer is quite hygroscopic,

and this, too has affected the availability of the material for subsequent

use. No analysis is available due to the hygroscopic nature of the polymer.

3.1.9 Poly(ethynylnickelocene) (IX)

Nickelocene (37.8g, 0.2 mole) was partly dissolved in 250 cc pentane under

nitrogen and cooled to -78*C. Bromine (48.0g, 0.3 mole) was added slowly

with good stirring and cooling below -500 C. The exothermic reaction

continued until almost all the bromine had been added.

After all the bromine was in (2 hrs), the suspended solid was stirred for 1

hour at -700C, and then allowed to warm to room temperature overnight.
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The brown solid product (28g) was filtered and washed with a little cold

pentane. It was dried for 24 hours in a vacuum dessicator over NaOH to

remove residual bromine.

Analysis for brominated nickelocene:

Calc for C10 H10Ni Br: C = 44.67, H = 3.72, N = 21.85, Br = 29.74

Found: C = 25.88, H = 2.80, Ni = 36.38, Br = 16.95

It is not clear exactly what this material is, but it evidently is not a

bromonickelocene. It contains only 1/3 bromine atom per nickel atom, and

it contains too much nickel per carbon atom. No further work was attempted

on this material.

3.1.10 Polyene from 3, 6-Dimethyldihydropyridazine (X)

Acetonylacetone [114g (1 mole)] was placed in a 500 ml flask under nitrogen.

Hydrazine [32g (1 mole)] dissolved in 68 ml of water was added to the

acetonylacetone with cooling to maintain the temperature at less than 300C

(40 minutes). After a further 1 1/2 hours at room temperature, the reaction

mixture was heated to 900C and held under reflux for 20 minutes. After

cooling, the mixture was extracted with ether, dried over potassium carbonate

and the ether removed to yield a pale gold oil. Rapid distillation at 1250C

(2mm) gave 78g (70%) yield of a pale yellow oil of 3, 6-dimethyldihydropyri-

dazine.

3,6-Dimethyl-l, 2-dihydropyridazine (22g, 0.2 mole) was dissolved in 150 ml

methanol, under nitrogen, in a 500 ml flask at room temperature and 20 ml of

10% aqueous sodium hydroxide were added, followed by 12g dimethylsulphate.

The temperature rose to 43C in five minutes, and then fell to 400C over the

next ten minutes, at which time a further 20 ml sodium hydroxide and 12g

dimethylsulphate were added, causing the temperature to reach 600 C in ten

minutes. Further quantities of sodium hydroxide and dimethylsulphate were

added, so that gentle refluxing was maintained without cooling, until 48g

(0.4 mole) dimethylsulphate had been added. When the final boiling began to

slow, 10% sodium hydroxide was added until cloudiness persisted (about 10 ml)

and refluxing was continued for another hour, adding more sodium hydroxide

each time the solution cleared.

23



The product was poured over 500g ice and extracted with ether. The ether

extract was dried over potassium carbonate and taken to dryness, to yield

21g (75%) dark brown oil, which was distilled at 950C (2mm).

Analysis: Calc. for C8H14N2: C = 69.57, H = 10.14, N = 20.28

Found: C = 69.24, H = 10.44, N = 20.21

Polymerization of this product with glyoxal was attempted next by two methods

a. Open Vessel Method

Tetramethylpyridazine (5.5g, 0.04 mole), and 6 ml of 40% aqueous glyoxal

were placed in a 50 ml flask with 0.02g hydroquinone and 0.02g pyridine,

and heated to 1000C under nitrogen with good stirring for two hours.

After cooling, the viscous product was extracted into benzene and dried

over potassium carbonate. Removal of the solvent left 6.1g black, sticky,

semisolid (X).

b. Sealed Vessel Method

The above quantities of reactants were sealed in a glass tube under

nitrogen and heated at 1200 C for three hours. The solid black product

was largely insoluble in most organic solvents. Boiling m-cresol

partly dissolved it.

Of the two methods, the latter appeared to give a better product, but it also

gave a difficultly soluble product. It was subsequently found that glacial

acetic acid dissolved the most material, but even this solvent did not dissolve

all of the polymer. It appears that this polymer is considerably crosslinked.

Thus, extracting 56 g of the seemingly crosslinked polymer with hot glacial

acetic acid resulted in the recovery of about 5g of material after removal

of the acetic acid under vacuum.

Analysis: Calc. for C10H12N2: C = 75.00, H = 7.50, N = 17.50

Found: C = 59.78, H = 6.12, N = 9.03

This poor analysis may be due to the fact that acetic acid was used as a

solvent, and the acetate salt ,nay have formed.
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3.2 Characterization of Polymers

Once the polymers had been prepared, a number of parameters relative to their

properties had to be evaluated. Their structures were determined by infrared

and ultraviolet absorption spectra. An indication, but not an absolute value,

of their molecular weight was obtained from their relative viscosities.

Solubilities were determined to a limited extent; just enough so that films

could be put down on the lock-and-key electrode substrate in a uniform manner.

Thermogravimetric analyses and isothermal stabilities were also obtained in

order to determine the long-term stability of the polymers. Finally, gas/

polymer interactions were determined for pure gases under different relative

humidities, as well as gases generated by a smoldering wad of cotton.

3.2.1 Physical Data

3.2.1.1 Solubility and Film Forming Characteristics

In order for the polymers prepared in this program to be capable of being

incorporated into a useful device, they had to be soluble in a solvent

that would be non-corrosive to the substrate, easy to handle, and would not

affect the chemical structure of the polymer being dissolved. Furthermore,

since it had been demonstrated previously that a four percent solution of

the particular polymer would consistently result in a film thickness of about

0.2 microns (Reference 2), it was decided to use the same solution concentra-

tion for this program. To this end, poly(phenylacetylene) (1), poly(p-nitro-

phenylacetylene) (IT), and poly(dicyanoacetylene)(VIII)were dissol.ved in acetone.

Poly(p-formamidophenylacetylene) (III) and poly(p-aminophenylacetylene (IV)

were dissolved in dimethylformamide (DMF), while poly(ethynylferrocene) (V)

was dissolved in benzene. Poly(ethynylpyridine) (VI) and the polyene from

1,2,3,6 - tetramethylpyridazine (X) were dissolved in glacial acetic acid and

poly(ethynylcarborane) (VII) was dissolved in methyl alcohol. The poly(ethynyl-

nickelocene (IX) could not be prepared.

Once the solutions were obtained, films of these polymers were placed on the

lock-and-key sensor for the necessary gas measurements. The method that

consistently-gave good films was via the technique described elsewhere

(Reference 2). The sensor was kept in a vertical position and then dipped

into the polymer solution. By withdrawing the sensor from this slowly, and
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as gradually as possible, the surface tension of the solution pulled the

excess liquid off the surface. The sensor was then stood on edge on a piece

of absorbent paper and allowed to dry. While in this position, the paper

pulled off any bead which might form at the bottom edge of the sensor. The

sensor was now ready for use in gas measurements.

3.2.1.2 Viscosities

Table 1A gives the values for the relative viscosities, at constant

concentration, for polymers I - IV. The other polymers were not placed in

this Table as their solubilities were different; their viscosities are in

Table IB.

It is interesting to note that although polymers II - IV were all made from

the same poly(phenylacetylene) (I), the viscosities were greater than that of

(I). This increase may be attributable to dipole or hydrogen bonding effects

between chains. In other words, association via a dipole - dipole interaction

may be occurring between the chains in polymer II and hydrogen bonding in

polymers III and IV.

3.2.1.3 Infrared and Ultraviolet Absorption Spectra

3.2.1.3.1 Infrared Spectra

One way of characterizing the chemical structure of an organic compound and/or

polymer is its infrared absorption spectrum. Thus, the infrared spectrum for

poly(phenylacetylene) is shown in Figure 7, and it compares with that obtained

previously (Reference 2). (Note: All IR spectra were obtained on a Perkin-

Elmer Model 521 Infrared Spectrophotometer.)

Figure 8 shows the infrared spectrum for poly(p-nitrophenylacetylene) (II), and

it is almost identical to that obtained previously (Reference 2), as shown in

Figure 9. Figure 10 depicts the spectrum of poly (p-formamidophenylacetylene)

(III) and Figure 11 is the infrared curve of poly(p-aminophenylacetylene) (IV).

In following the synthesis of poly(ethynylferrocene), starting with the

commercially available acetylferrocene, the respective infrared spectra are

shown in Figure 12 for the acetylferrocene, Figure 13 for the l-chloro-2formyl-

vinylferrocene, Figure 14 for the ethynylferrocene and Figure 15 for the
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poly(ethynylferrocene) (V).

Figures 16-19 are the infrared spectra of compounds either used or generated

in the synthesis of poly(ethynylpyridine) (VI).

Figure 20 is the infrared spectrum of C-ethynylcarborane and Figure 21 is

that of the poly(ethynylcarborane) (VII).

Figure 22 is the infrared spectrum of poly(dicyanoacetylene) (VIII), and

Figure 23 is the infrared spectrum of the brominated nickelocene prepared

in the attempt at obtaining poly(ethynylnickelocene) (IX). Finally, in the

course of preparing the polyene from 1,2,3,6-tetramethylpyridazine, tile

infrared spectra of both the monomer and polymer were obtained (Figures 24

and 25, respectively).

3.2.1.3.2 Ultraviolet Spectra

Figures 26-29 are the ultraviolet spectra of polymers I-IV, respectively

(all UV spectra were obtained with a Cary 14 recording spectrophotometer).

Figures 36-34 are the ultraviolet spectra for polymers V - VIII and X,

respectively. Poly(ethynylnickelocene) (IX) could not be prepared, so its

spectrum is not available.

3.2.1.4 Thermal Stability Measurements

Quite germane and critical to the program are thermal stability measurements,

i.e., stability to high temperatures and to a particular temperature for

an extended period of time. For this purpose, thermogravimetric analysis

(TGA) curves were run in air using a duPont 950 Thermogravimetric Analyzer,

990 Thermal Analyzer and a Cahn Time Derivative Computer. In the figures

containing these curves, there are two types of curves shown. The upper

curve represents the rate of weight change with time and temperature while the

lower curve shows the absolute weight loss. Figures 35-43 are the TGA

curves for all polymers except IX, and Table II gives the isothermal weight

losses.
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3.2.2 Gas Measurements

Since one of the necessary aspects of this program is to determine gas/

polymer interaction effects for possible use in fire detecting devices,

the various polymers prepared were applied as films onto a lock-and-key

electrode substrate and placed into a 7000 cc stainless steel vacuum chamber

which was connected to a vacuum rack.

The lock-and-key (interdigitated) electrodes were prepared on Corning

7059 glass slides that were 1" x 1" x 0.048". These glass slides were

degreased in hot (600C) trichloroethylene then acetone at room temperature,

followed by hot (60*C) methyl alcohol, rinsed with deionized (D.I.) water

and blown dry with nitrogen. They were then cleaned in concentrated (48%)

hydrofluoric acid for two seconds and those substrates that remained clear

were kept for processing into the sensor; all others were discarded. The

good slides were then given a D.I. water rinse for 30 minutes, blown dry

with nitrogen and baked for ten minutes at 1800C in a vacuum oven prior to

metal li zati on.

The slides were placed in a vacuum system and the surfaces were reverse

sputtered for 30 seconds followed by the sputtering of nickel for 1-1/2

minutes (to get a film 50-100 A thick) and then gold was sputtered on for

eight minutes to a thickness of 2000 A. Filtered Hunt photoresist was spun

onto the gold surface at 5000 rpm for 40 seconds and then dried in a dessicator,

under nitrogen, for 30 minutes, followed by a bake in a vacuum oven for 60

minutes at 660C. The slides were then masked with the lock-and-key pattern

and exposed for eight seconds, developed and then rinsed in D.I. water. This

was followed by baking at 1250C for 30 minutes under infrared lamps.

The next step was to etch the gold pattern on the slide with KI gold etchant

(consisting of four parts of KI, one part of 12 and 14 parts of water) at

600C and then etching the nickel at room temperature in a mixture of one

part nitric acid, one part acetic acid and one. part acetone. The photoresist

was then removed with Room Temperature Hunt Microstrip.
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After completion of the above steps, the sensors were tested for shorts and

then 0.002" x 0.010" gold ribbon leads were soft soldered to the electrodes.

Frequently, incomplete removal of the nickel subsurface or some other conduct-

ing short would result and the surface conduction was too high. However,

after overcoming these difficulties in obtaining good lock-and-key electrode

sensors, gas measurements were made on all polymers that were prepared and

that could be put down as films on the electrodes. In all cases, the applied

voltage across the 5 mil spacing between the electrodes was 130 volts, d.c.,

and the film thickness of polymer was about 0.2 - 0.3 microns [actual thickness

was not measured in this program, but technique used for depositing films, as

described elsewhere, (Reference 2) usually gave films about 0.24 microns].

Plate I shows the overall system with the chamber, its connection to the

vacuum rack, and the electrometer used for.electrical measurements. Figure

44 depicts the circuit diagram of this setup. Plate II shows the inside of

the chamber with a coated sensor and Plate III shows the lock-and-key electrode

sensor without the polymer coating on it.

Initially, a number of experiments were run on polymers I-IV to semi-

quantitatively determine their response to "fire gases." Experimentally,

the barrel of a 20 ml hypodermic syringe, with the needle embedded in a rubber

stopper, was held vertically, with the open end down. A burning paper strip

was thrust into the syringe where it continued to burn for a few minutes until

lack of oxygen.extinguished the flame. The unburned paper was withdrawn,

and the gases which had been generated by the flame were trapped inside the

syringe by inserting the plunger.

The rubber stopper was then removed from the needle and the gases which were

trapped inside the syringe were caused to flow over an equilibrated coated

sensor by holding the needle within 1/4 inch of the sensor surface and

depressing the plunger over approximately five seconds.

Controls were run using a syringe full of room air at 30% RH, a syringe full

of ammonia and a syringe full of exhaled breath. Sensitivity to a given gas

was indicated by an increase in current during gas flow, followed by a slow

return to approximately the original value.
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Subsequent to this initial exploratory study of the response of the poly

(phenylacetylenes) to "fire gases," etc., a detailed study was made of all

the film-forming polymers' response to various gases, as well as to "fire

gases," but under more controlled and quantitative conditions.

The experimental procedure was as follows:

The test conditions were in air at zero percent relative humidity (RH), 50% RH and

100% RH; both in the absence of, and the presence of, various gases, i.e.,

ammonia, carbon monoxide, acrolein, butadiene, etc. In addition, measure-

ments were made on polymers exposed to the combustion products ("fire gases")

evolved from smoldering cotton in air at 50% RH.

The coated sensor was placed in the chamber (Plate II), which was then

evacuated until the current in the sensor attained equilibrium. The

chamber was then filled with dry air, and the current again noted. (No

change could generally be detected.) The chamber was then opened, and a

beaker was placed inside, and the chamber rapidly closed again. The beaker

contained a solution designed to provide a constant relative humidity inside

the chamber. For 50% RH, saturated potassium dichromate was used. For

approximately 100% RH, pure water was used.

When the current in the sensor had attained equilibrium again, a quantity of

air was withdrawn from the chamber equal to the volume of test gas to be

injected. This was accomplished using a hypodermic syringe inserted through

a rubber septum. The purpose of this was to maintain a maximum of one

atmosphere pressure at all times. The test gas was then injected through the

septum and any current changes in the sensor were monitored.

For better controlled "fire gas" measurements, a nichrome wire was inserted

into the chamber and used as a resistance heater to generate the "fire gases."

Plate IV shows the nichrome wire heater inside the chamber. A wad of cotton

was then wrapped around the wire and the voltage gradually increased until

browning, charring, and smoldering (but not burning with a flame) occurred.

Plate V depicts the cotton wrapped around the wire.
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Tables m-X show the gas responses for all polymers prepared except poly(di-

cyanocetylene) (VIII) and poly(nickelocenylacetylene) (IX). The latter

could not be prepared as a characterizable polymer, and the former (VIII)

was found to be insensitive to adsorbed gases. Even under vacuum, fairly

large quantities of ammonia (3000 ppm) were not detected with VIII.

Acrolein, acetylene, water vapor and the "fire gases" from burning cotton

also were not detectable.

Table XI shows the "fire gas" measurements in air at 50% RH for all polymers

that were used for gas measurements.
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4.0 DISCUSSION OF RESULTS

4.1 Characteristics of Polymers

4.1.1 Spectral Analysis

In discussing the various spectra obtained (both infrared and ultraviolet), it

would be well to briefly point up the relationship between the synthesis and

the spectra. For example, where one polymer was derived from another, it

is of interest to show how the appearance (or disappearance) of a particular

functional group can be followed spectroscopically. This applies equally well

to the preparation of a polymer from its monomer, wherein the characteristic

absorption peaks attributable to the monomer disappear as it is converted to

the polymer.

In view of the fact that polymers I - IV had been quite thoroughly investi-

gated previously (Reference 2), no problem was anticipated in their synthesis

for this program. Thus, the products obtained, and the various spectra,

corresponded quite closely to what was expected. The infrared spectra

(Figures 7-11) showed the characteristic absorption peaks for the particular

functional group present in the structure. For example, the infrared

spectrum of poly(phenylacetylene) (I), shown in Figure 7, compares favorably

with that obtained previously (Reference 2), while the NO2 absorption in

polymer II appears at 1350 cm-l1, (Figure 8) and its spectrum compares very

favorably with that obtained previously (Figure 9) (Reference 2). Then, in

the reduction to the formamide group (polymer III), the N02 absorption is

found to have disappeared and the appearance of a CO stretch at 1660 cm
-

is observed (Figure 10). Subsequently, hydrolysis of the formyl group

eliminates the CO stretch and the NH absorption at 3250 cm-1 is quite

pronounced for polymer IV (Figure 11) (just as it was in the spectrum of

the formamide group of polymer III).

Another spectral study made was ultraviolet absorption spectroscopy. Ultra-

violet absorption spectroscopy is a useful analytical tool to relate properties

to electronic structure. Normally, isolated double bonds absorb in the far

ultraviolet region, and with increasing conjugation there is a shifting towards

the near ultraviolet and then on into the visible. No visible

absorptions were determined in this program, so it is not possible to correlate
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the color of the polymer with the absorption characteristics of the conjugated

polyene backbone. In most instances, there was an aromatic moiety in the

polymer, and it was this group that was making the greatest contribution to the

UV spectrum.

With poly(phenylacetylene) (I), the maximum (in the ultraviolet) (Figure 26)

is lower than what one would expect for the phenyl group (usually found to be

around 260 nm), i.e., it is around 245 nm. This might be attributable to the

fact that the phenyl groups are not coplanar with the backbone, but are arranged

in a close-packed order laterally to the backbone and therefore make little or

no contribution to electronic resonance interaction with the backbone (Reference

2), thereby leaving the conjugated polyene as the sole contributor to the UV

absorption. In the case of the poly(p-nitrophenylacetylene) (II) Figure 27,

however, the possibility for a greater degree of resonance interaction can

occur [see discussion in Final Report on Contract NAS12-15 (Reference 2)] and

the absorption maximum is shifted to a longer wavelength than I. Polymers

III and IV, (Figures 28 and 29 respectively) show a slight absorption shoulder

at around 245 nm and at 285 nm (for IV). It is possible that carrying the

spectra out to the visible region might have shown some peaks there, but we

don't have these data so we cannot be sure. The only argument in favor of this

is the deep color exhibited by these two polymers.

In following the synthesis of poly(ethynylferrocene) (IV) starting with the

commercially available acetylferrocene, the respective infrared spectra are

shown in Figure 12 for the acetylferrocene, Figure 13 for the l-chloro-2-formyl-

vinylferrocene, Figure 14 for the ethynylferrocene and Figure 15 for the

poly(ethynylferrocene) (V). Figure 13 has a C-C stretch at 1590 cm-l , while
-1 -1

Figure 14 has a -C=C-H stretch at 3280 cm and a -CC-stretch at 2110 cm

and complete removal of the 1590 cm-l1 peak. In Figure 15, as would be

expected for the polymer, these stretching frequencies are gone. The UV

spectrum for V (Figure 30) shows no absorption for aromatic rings, but a

decided shift toward the near UV and possibly on into the visible, with

absorption peaks at 265-287 nm (plateau), 305 nm and 325 nm.
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Figures 16-19 are the infrared spectra of compounds either used or generated

in the synthesis of poly(ethynylpyridine) (VI). Again, there is a -CEC-H

stretch at 3280 cm- for the monomer, 4-ethynylpyridine (shown in Figure 18),

and its disappearance in the polymer (shown in Figure 19). The UV spectrum

(Figure 31) has its maximum around 260 nm, characteristic of aromatic groups.

The infrared spectrum of C-ethynylcarborane (Figure 20) is probably character-

istic of this compound. The -CECII stretch at 2110 cm- I is noticeably present,

but when polymerized, the 2110 cm-1 band has disappeared (Figure 21). Further-

more, it appears that during polymerization, oxidation of the carbon backbone

has occurred, as evidenced by the appearance of a carbonyl absorption at 1700

cm- 1. Therefore, the UV spectrum (Figure 32 is not truly characteristic of

the expected poly(ethynylcarborane) (VII).

Figure 22 is the infrared absorption spectrum of poly(dicyanoacetylene) (VIII).
-1

It shows the very characteristic absorption peak at 2200 cm- I for the CN

stretch. However, the UV spectrum (Figure 33) is interesting in that, as was

expected, since no aromatic moieties are present, no absorption is found in the

240-260 nm region. Instead, the absorption peak is at 300 nm.

Although the preparation of poly(ethynylnickelocene) (IX) was not successful,

the intermediate obtained in the course of its attempted preparation, viz.,

the brominated nickelocene was analyzed by infrared spectroscopy, and its

spectrum is shown in Figure 23. However, since the polymer was not obtained,

no UV spectrum is available.

Finally, in the course of preparing the polyene from 1,2,3,6-tetramethyl

pyridazine, the infrared spectra of both the monomer and polymer were

obtained (Figures 24 and 25, respectively). The only characterizable absorp-

tion peak is that of the methyl group in the monomer at 1370 cm-1 (Figure 24).

The UV spectrum (Figure 34) had its absorption peaks at about 255 nm and 290

nm. Since no aromatic groups were present in this polymer, the spectrum

could be attributable to a conjugated polyene system with some pseudo

aromaticity from the electrons of the pyridazine ring nitrogens interacting

with the double bonds in the ring.
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4.1.2 Thermal Analysis

Interestingly enough, the thermal stability data appears to correlate reason-

ably well with the UV spectra, viz., the greater the degree of conjugation

and/or aromaticity (therefore the greater the resonance stabilization of

electrons), as well as the absence of CH moieties, the greater the thermal

stability. Thus, poly(ethynylferrocene) (X), poly(dicyanoacetylene) (VIII)

and poly(phenylacetylene) (I) were the most stable, as shown by their TGA

curves (Figures 39, 42, and 35) respectively. The least stable was the

poly(ethynylcarborane) (VII), as expected. Although the carborane cage is

a relatively stable moiety, the fact that we appeared to have an oxidized

product and no conjugation in the backbone seemed to correlate with the

observed major weight loss on heating. Presumably, after the backbone had

been oxidized and eliminated, the remainder of the molecule appeared to

stabilize (Figure 41). Next, in order of decreased thermal stability was the

poly(ethylidenetetramethylpyridazine) (X). This compound could readily lose

nitrogen (possibly as a dimethyl hydrazine moiety) and then leave a poly-

acetylene residue that would remain stable for a period of time with heating

(Figure 43).

The isothermal weight loss data, however, (Table II) show some interesting

results. It was difficult to draw correlative conclusions between TGA

data and the isothermal data. The isothermal data were obtained at 950F

(350C), and generally the majority of the polymers did not show evidence for

thermal decomposition at this point; particularly since the isothermal data

were obtained from runs made over extended periods of time at 950F (350C),

while the TGA runs saw this temperature for only a few seconds. In addition,

if there was a highly conjugated structure with stabilizing moieties, such

as a phenyl group or a ferrocenyl group, this, too, would stabilize the

polymer. Thus, for example, the poly(ethynylcarborane) (VII) did not give

evidence in the UV spectrum of a conjugated polyene, and it demonstrated

the poorest stability at 350C (under isothermal heating for 168 hours).

Poly(ethynylferrocene) (V), however, does show excellent stability

under isothermal heating conditions. Of special interest, though, is the

case of poly(dicyanoacetylene) (VIII). This polymer increased in weight;

and this could be attributable to the hygroscopic nature of the polymer.

36



Thus, for possible home use, for a sensor to be exposed to summer heat, the

most likely polymer would be the poly(ethynylferrocene) (V). However, other

polymers may also be considered if, after exposure to air and heat, they will

stabilize themselves, as, for example, poly(p-aminophenylacetylene) (IV) or

poly(ethynylpyridine) (VI). It should be noted that although polymer X showed

low weight losses under isothermal conditions, it did not demonstrate the same

"fire gas" responsiveness that V did. Thus a sensor prepared with V would

show the best stability at an ambiance of 350 C.

4.2 Gas/Sensor Interactions

In addition to the synthesis and characterization of various polymers for

potential use as gas detecting substances it is important to know the inter-

action of these polymers, on a lock-and-key electrode geometry, with various

ambiances. As has been frequently stated, a conjugated polyene. e.g., a poly-

acetylene with various appendages from the acetylene backbone or a linear

polyene with no appendages, would probably show the necessary electrical and

electronegativity properties for use as a gas detector. Thus, as has been

demonstrated for the poly(phenylacetylene) series of polymers, i.e., I-IV,

the interaction of these polymers with certain gases such as ammonia, for

example, has resulted in a change in the electrical conductance of these

polymers; with II being the most responsive. However, in a "fire gas" environ-

ment, III was the most responsive of this series of polymers (as seen in

Table XI).

Of all the polymers that could be prepared, the only one that showed absolutely

no detectable gas response was poly(dicyanoacetylene) (VIII). It appears from

these data that the better a polymer conducts, the more insensitive it is to

the presence of electron-donating or electron- withdrawing species (Reference 23).

The conductance of VIII is around 2.7 x 10
-7 amps versus about 10-10 to

lO- 11 amps for the other polymers. Apparently, we require a relatively low

conductance material to effect major conductance changes when charge-transfer

complex formation occurs, thereby enhancing the sensitivity of the system.

Of the remaining polymers, only five, i.e., polymers I-V, showed a reasonably

large response to the various gases and "fire gas" used; and in almost

every instance, the electronegativity relationship between the polymer and
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gas was found to be operable.

Initially, the gas/polymer interactions were studied by first evacuating the

chamber and then introducing small amounts of the gas expected to be present

in a cotton fire. Next,the measurements were made under smoldering conditions

where the gases generated were from smoldering cotton (no flame). In addition,

these measurements were made in dry air, and in air at 50 percent relative

humidity (RH) and approximately 100 percent RH. Essentially, the results

obtained substantiated the data obtained under vacuum conditions with regard to

electronegativity effects and with regard to the detectability of ammonia, carbon

monoxide and even the gases generated from smoldering cotton. Thus, examining

the data in Table VII for gas responses of poly(ethynylferrocene) (V), it is

seen that it was minimally, but quite decidedly, responsive to such gases as

CO and butadiene, and very responsive to "fire gases" (as seen in Table XI).

Another observation of significance is that both poly(ethynylpyridine)(VI)

(Table VIII) and poly(ethylidenetetramethylpyridazine) (X) (Table X) showed

sensitivity to CO, with the former polymer being more responsive. This is

interesting in that it substantiates the fact that a strong electron donor

would be needed to detect CO, further supporting the electronegativity concept

of gas/polymer interactions.

Table XI also depicts the response of the various other polymers exposed to

smoldering cotton in air at 50% RH. It is noted that the response times are

quite rapid and that in all cases the sensor came back to its original value.

The reason for the long time to return to the original value was that the

sensor was in a closed chamber with no fresh air being brought in so that

it took time for the gases to equilibrate in the adsorption equilibrium.

Furthermore, there was grease between the cover of the chamber and the

chamber; and this grease could be a solvent for many of the gases, thereby

gradually removing them from the chamber. A still further contributing factor

to possible removal of the gases from the environment is the beaker of water

or salt solution used to regulate the RH. This, too, could be a solvent for

some of the gases, also removing them from the atmosphere in the chamber.

A comment should be made at this point relative to the long term stability of

the sensors. It is recognized that should a fire detector be made, it
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would have to be able to withstand ambient conditions of various gases, dust,

etc. and should be operable after a long period of time. In the course of

performing on this program, and while waiting for new sensors to be prepared,

it was found that a poly(p-nitrophenylacetylene) sensor prepared in 1967 for

use on Contract NAS12-15 (Reference 2), and that had been exposed to dust,

dirt and all kinds of laboratory ambiances over the six years, still responded

in similar fashion to ammonia gas, compared to what had previously been

reported (Reference 2). Thus, since conjugated polyenes of this nature are

readily stabilized (as further evidenced by the thermal stabilities obtained

for the various polymers prepared), long term stability can be expected from

devices that will utilize conjugated polyenes as sensing polymers.

A further matter of concern in this program has been that of the effect of

changes in humidity on the operation of the sensor. Table XI depicts the

speed of response of a sensor to smoldering cotton compared to the longer

time required for a change in relative humidity. It has been demonstrated

that exposing the sensor to different relative humidity conditions has a

pronounced effect on the conductance of the sensor. However, rapid changes

in RH are not likely to occur (Reference 24). It is well established that

humidity changes are relatively long-timed events; and going from 50% RH to

approximately 100% RH, in real operating conditions could take as little as

one hour, or longer. Usually, in any situation of change in humidity (even

in the case of a fog bank rolling in) there are gradients dependent upon

temperature and dew point; and these take longer to occur than the development

of gases from a nearby fire. Therefore, since the sensor has time to equili-

brate to the change in humidity, this won't cause the alarm to sound due to

sudden changes in conductance. A.fire, on the other hand, will be a rapid

event and exhibit a drastic sudden change in concentration of many gases in

the ambiance from what was present immediately before the fire started

smoldering or burning, including the generation of water. This change in -

concentration and type of gas will be capable of causing a rapid change in

conductance of a sensor and thereby sound an alarm if differential rate of

change circuitry is used. The following example, which concerns itself with

the detectability of a fire in the presence of water vapor from such activities

as washing, showering, scrubbing floors, etc., as well as cigarette smoke,
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will demonstrate the concept and feasibility of a differential fire detection

circuit.

Most of the polymers we have developed, and even the bare sensor, are sensitive

to water vapor. For this reason, sudden increases in relative humidity in a

real situation could trigger a false alarm.

Another possible cause of false alarms would be tobacco smoke, which, of

course, contains all the components of cellulosic fire products.

To prevent false alarms in these common household situations, it will be

necessary to have at least three sensors in any sensing circuit. These will

be:

1. The main sensor, sensitive to fire gas vapors. This would be the multiple

gas sensor to be developed in this program.

2. A secondary sensor, insensitive to fire gases, but sensitive to water.

3. Another secondary sensor, insensitive to fire gases, but sensitive to

some component of tobacco smoke not normally found in a cellulosic fire.

All these sensors would be integrated into the same circuit which would be

designed so that in the case of a sudden increase in humidity, sensor #2

would tell #1 that such an increase had occurred and to ignore the changes in

conductivity caused by the humidity. In a fire, sensor #1 would have the fire

gas input over and above the humidity input, which would be uncompensated by

sensor #2.

Similarly, in the presence of tobacco smoke, sensor #3 would tell #1 to ignore

concentrations of fire gas equivalent to the amount of tobacco smoke present.

Any fire gas products in excess of that related to the tobacco smoke present

would trigger the alarm.

In order to determine how much water vapor is actually present in the atmos-

phere of either our test chamber, or a room, and what amount of water vapor
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would be added to these enclosures upon total combustion of cotton, the

following exercises are of interest. From handbooks it is determined that

at 50% RH, the partial pressure of water at 250 C is 12 mm. In 7000cc of

air (the volume of our test chamber), there are n moles of water.

Thus, from

PV= nRT

we get

p = 12 , V= 7000, R=82 and T-3000K
760

12 S7000
760

n = 30=- 0.00045 mole H2 082 •300

Then, since cellulose will burn in air to yield CO2 and 11H20, viz.,

(CI2 H22 0 11 ) + 12 02~-- 12 CO2 + II H2 0

and approximately 50% of the cellulose is water (actually 58%), the burning

of 0.4g of cotton will result in about 0.2gH2 0. Therefore, completely

burning the 0.4g of cotton is enough to cause the RH to go from 50% to 100%

in the chamber.

As a further exercise on the effect of burning cotton,. let us consider the

case of an "average" room of 10 feet by 10 feet by 8 feet. Thus, the 800

cubic feet equals 21,600,000cc, or V = 2.16x10 7, and at 50% RH we get,

12 2.16 - 107
n = 760 = 14 moles H2 0

82 300 2

with 14 moles equalling 252 grams of water. Therefore, burning one pound of

cotton will release about 250 grams of water, thereby increasing the RH to

100%. However, under smoldering 'conditions, it is unlikely this amount of

cotton would be consumed unless smoldering continued for a long time.

Therefore, detection of a fire would not rest solely with detection of the

water generated; particularly, since at low levels of combustion, oxidation
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is incomplete and mostly intermediate products, e.g., CO, hydrocarbons and

aldehydes, among others, would be the more likely products.

Thus, there have been two general observations with regard to the responses

obtained under various humidity conditions:

1. At low humidity (0.1%, or essentially dry air conditions), the sensors'

response at 760 mm first with dry nitrogen and then dry air from a gas

cylinder are essentially identical to their response at 10- 1 mm (vacuum

conditions). In other words, no changes in reading on the electrometer.

Increasing the humidity causes the sensor to become more conductive; and

the absolute value of the response to some gases - particularly ammonia

seems to be higher, but the sensitivity, as measured by absolute response

divided by background conductivity, is distinctly lower at higher

humidities.

2. When smoldering conditions were set in the chamber containing a solution

to regulate humidity, the conductivity of the sensors rose rapidly in

the first minutes following the beginning of smoldering, but within an

hour or so, when the original humidity equilibrium situation has had a

chance to reestablish itself, the conductivity of the sensor returned

to the value it had before the smoldering began.

It would thus appear, from the first observation, that relatively high concen-
trations of water vapor, e.g., 50% RH, would mask the responsiveness of the

sensor to the gas to which it would normally be expected to be sensitive. The

significance of the second observation is that after the sensor has equilibrated

itself to a particular RH, the change in conductance is then due to either a

change in RH or a particular gas, or both. When the adsorption-desorption

equilibrium has reestablished itself by having the gases that were generated by

the fire either seep out of the chamber or dissolve in the solution used

to regulate the 50% RH, the sensor's conductance should return to the base

line value present before the fire. Thus, water vapor that is suddenly

introduced into the environment, if not from a fire, could generate misleading

results unless balanced out of the circuit by a sensor sensitive only to

water vapor.
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5.0 CONCLUSIONS

The synthesis of polymers of varying electronegativity that can eventually

show a demonstrated capability of interacting with gaseous substances, and

thereby effect a change in some electrical parameter that potentially can

be used in developing an early warning fire detector has been demonstrated.

Of the polymers prepared, poly(phenylacetylene) (I), poly(p-nitrophenyl-

acetylene) (II). poly(p-formamidophenylacetylene) (III), poly(p-aminophenyl-

acetylene) (IV, poly(ethynylferrocene) (V), poly(ethynylpyridine) (VI) and

poly(ethylidenetetramethylpyridazine) (X) seemed to be most responsive to

the various ambiances. Of special interest was the CO detectability by

the latter two polymers (VI and X), thereby reinforcing the electronegativity

concept of electron donor/electron acceptor relationships in gas/polymer

interactions.

In addition, as was expected, a conjugated polyene structure is quite thermally

stable. This was amply borne out by the thermal stability of poly(phenyl-

acetylene), poly(ethynylferrocene) and poly(dicyanoacetylene). In the latter

case, it is likely that considerable dipole-dipole interactions, as well as

resonance effects, could be enhancing the thermal stability of the polymer;

plus the fact that no hydrogens are present to act as labile sites in the

molecule. Thus, developing a fire sensor from a conjugated polyene should

result in long term stability.

Finally, after the sensor has equilibrated itself to a particular relative

humidity caused by metereological conditions and household activities, e.g.,

washing, showering, etc., its only change due to moisture in the ambiance

would now be attributable to the water vapor generated by a smoldering fire;

and this amount of water is probably low due to incomplete combustion.

Thus, based upon the electronegativity or electron configuration of a

particular polymer, e.g., the d-orbital electrons of iron, as in poly(ethynyl-

ferrocene), or the high electron density of poly(ethynylpyridine), for example,

it is possible to develop a number of sensors, each of which is specific for

a particular gas, and to combine these into a multiple sensor detector for an

early warning fire alarm.
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6.0 RECOMMENDATIONS

In view of the fact that conjugated polyene polymers have been capable of

electrical conduction, and gas/polymer interaction effects, as evidenced by

changes in conductance, it is suggested that this type of effort be continued.

There are two major areas to investigate further: (1) Practical device

development - including both chemistry and electronics: (2) Basic program

relating to gas/polymer interaction effects.

Under the first category, we have to consider the chemistry, as follows:

Based upon the response behavior of poly(ethynylferrocene), the possibility of

using other organometallic polymers for specific gas/polymer interaction

effects is indicated. Representative metal-containing polymers may be

phthalocyanines, poly(ethynylnitroferrocene), poly(ethynyl cobal tacene), etc.

By varying the metal atom, but maintaining a conjugated polyene structure for

the electrical conductance, it may be possible to obtain a high degree of

specificity for various gases, e.g., CO, hydrocarbons, aldehydes, etc. Other

polymers that may prove equally interesting, and capable of demonstrating

specificity, would be poly(imidazoles), polymeric Schiff-bases and poly(p-di-

methylaminophenylacetylene), among others. A still further polymer of interest

is a copolymer of some internal alternating electron acceptor/electron donor

type thereby showing enhanced sensitivity to combinations of electron acceptor

and electron donor gases, e.g., CO and NH3 .

With regard to the electronics, consideration should be given to other types

of measurement than conductance. Thus, capacitance measurements should be

very sensitive and responsive to gas/polymer interactions. Absorption of

gases into polymers should change the dielectric constant of the medium which

should be readily detectable by capacitance measurements. Furthermore, use

of discriminatory or compensatory circuits should eliminate interference from

the humidity of the ambiance with respect to a sensor's response to a smolder-

ing fire.

Another important practical problem is to study the response behavior of

various polymers prepared for use in sensors when exposed to smoldering of

other materials, e.g., nylon, wool, urethanes, acrylics, vinyls, phenolics,

etc. In addition, these measurements should be made at different temperatures,

e.g., 00 C, 250C, 50OC, 1000C, etc.
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Under the second category (basic program), the question arises as to what

effect water vapor has on the sensor's operation. It is not known how much

water gets into the polymer being used as a sensor. Putting each polymer on

an electrode substrate and using a microbalance, it should be possible to

determine weight increases upon exposure to water vapor. Similarly, the

same technique could apply to the gases, e.g., CO, hydrocarbons, aldehydes,

etc., as well.

Related to this, a spectral (infrared and ultraviolet) study could be made

of the various polymers upon exposure to gases. A correlation between

spectral changes (upon exposure to various gases at different partial

pressures) and electrical response should indicate which polymer, and the

functional group in that polymer, is responsible for greatest specificity

with a particular gas. Furthermore, in trying to design a polymer that will

show maximum interaction effects, it would be of interest to compare the

properties of those polymers that have their functional group as an appendage,

e.g., ferrocenyl moiety, or if it is a conjugated part of the backbone, such

as a ferrocenyl moiety in a Schiff's base structure.

Tied in with this latter study, would be a detailed study of the ultraviolet

absorption spectra of the various compounds, and their relationship to conduc-

tivity and complexing capability. This information would more readily enable

the design of a polymer which would show maximum interactions with gases.

For example, the UV spectrum of a conjugated polyene will be different if it

is isolated from the appendage attached to it or in resonance interaction with

the appendage; if in interaction, it will be more related to the electronega-

tivity of the appended moiety and therefore more capable of maximum interaction

effects.

Finally, another area of importance to investigate is the molecular weight of

the polymers prepared.A study should be undertaken with regard to molecular

weight distribution and electrical conductance. Increasing the molecular weight

should probably increase the electrical conductance due to the fact there

will be fewer hoppings necessary from chain-to-chain.
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TABLE IA

POLYMER VISCOSITIES

Solvent: Dimethylformamide

Temp.: 200C+0.10

Concentration: 0.05%

Polymer Relative Viscosity(t/to )

Poly(phenylacetylene) (I) 1.19

Poly(nitrophenylacetylene) (II) 1.34

Poly(formamidophenylacetylene) (III) 1 .24

Poly(aminophenylacetylene) (IV) 1.31

TABLE IB

RELATIVE VISCOSITIES AT 200C+0.1 0

CONCENTRATION 0.05%

Polymer Solvent Rel. Vis.

Poly(ethynylferrocene) Toluene 1.04

Poly(ethynylpyridine) Acetic Acid 1.08

Poly(ethynyl carborane) Methanol 1.10

Poly(tetramethylpyridazine) Acetic Acid 1.10

Poly(dicyanoacetylene) Acetone 1.09
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TABLE II

ISOTHERMAL WEIGHT LOSS AT 350C IN AMBIENT AIR

Polymer Weight Loss (Percent) After Hours Shown*

24 hrs. 48 hrs. 72 hrs. 96 hrs. 168 hrs.

Poly(phenylacetylene) (I) 0.71% 0.83% 0.87% 0.87% 0.89%

Poly(p-nitrophenylacetylene) (II) 0.10% 0.29% 0.25% 0.32% 0.32%

Poly(p-formamidophenylacetylene) (III) 0.75% 1.46% 1.93% 1.90% 1.94%

Poly(p-aminophenylacetylene) (IV) 0.80% 0.76% 0.84% 0.84% 0.80%

Poly(ethynylferrocene) (V) 0 - - 0 0

Poly(ethynylpyridine) (VI) 0.24% - - 0.28% 0.28%

Poly(ethynylcarborane) (VII) 1.03% - - 1.88% 2.01%

Poly(ethylidenetetramethylpyridazin ) 0 - - 0 0.08%

Poly(dicyanoacetylene) (VIII) +0.10 - - +1.30% +2.15%

*Weighed amounts of polymer were placed in porcelian crucibles and loosely

covered. They were placed in a circulating air oven at 350 + I"C. Weight

losses were recorded at 24 hour intervals up to 96 hours and then at 168

hours.
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TAULE III

GAS RESPONSES OF POLY(PHEYLACETYLEJE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

0 Air Only 10-1 mm 7.8 x 10-10

0 Air Only - 760 mm 7.8 x 10- 10

0 NH3 1 cc (1.4 ppm) 74 x 10-10

0 NH3  5 cc (7 ppm) 320 x 10-10

0 C2H2  20 cc (29 ppm) 7.8 x 10- 1
0 C2H2  100 cc (140 ppm) 7.8 x 10- 10

0 CO 100 cc (140 ppm) 7.8 x 10

50% Air Only -3.4 x 10-6

50% NH3  1 cc (1.4 ppm) 3.4 x 10-6

50% NH3  5 cc (7 ppm) 3.5 x 10-6

50% NH3  20 cc (29 ppm) 3.8 x 10-6

50% C2H2  200 cc (290 ppm) 3.4 x 10-6

50% CO 200 cc (290 ppm) 3.4 x 10-6

100% Air Only - 4.8 x 10-4

100% NH3  20 cc (29 ppm) 4.9 x 10-4

100% NH3  100 cc (140 ppm) 5.1 x 10-4

100% C2H2  200 cc (290 ppm) 4.8 x 10-4

100% CO 200 cc (290 ppm) 4.8 x 10-4

hMCDONNELL DOUGLAS CORPORA TION
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TABLE IV

GAS RESPONSES OF POLY(NITROPHENYLACETYLENE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AIPS)

0 Air Only - 10- 1 mm 8.9 x 10-10

0 Air Only - 760 mm 8.9 x 10-10

0 NH3  1 cc (1.4 ppm) 140 x 10-10
0 NH3  5 cc (7 ppm) 610 x 10-10

0 C2H2  20 cc (29 ppm) 8.9 x 10-10

0 C2H2  200 cc (290 ppm) 8.9 x 10-10

0 CO 200 cc (290 ppm) 8.9 x 10-10

50% Air Only - 1.1 x 10-5

50% NH3  1 cc (1.4 ppm) 1.1 x 10-5

50% NH3  5 cc (7 ppm) 1.3 x 10-5

50% NH3  20 cc (29 ppm) 1.7 x 10-5

50% C2H2  200 cc (290 ppm) 1.1 x 10-5

50% CO 200 cc (290 ppm) 1.1 x 10-5

50% Acrolein 100 p L (Liq) 1.l x 10- 5

100% Air Only - 1.7 x 10-3

100% NH3  20 cc (29 ppm) 1.9 x 10- 3

100% NH3  100 cc (140 ppm) 2.4 x 10-3

100% C2H2  200 cc (290 ppm) 1.7 x 10-3

100% CO 200 cc (290 ppm) 1.7 x 10-3

100% Acrolein 100 p L (Liq) 1.7 x 10-3

MCDONNELL DOUGLAS CORPORATION
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TABLE V

GAS RESPONSES OF POLY(FORMAMIDOPHEINYLACETYLENE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE. SENSOR CURREIT (AMPS)

-1 -10
0 Air Only - 10 mm 7.4 x 10

0 Air Only - 760 mm 7.4 x 1010

-10
0 7H3  1 cc (1.4 ppm) 9.7 x 10l

0 IH3  5 cc (7 ppm) 450 x 10-10

0 C2H2  20 cc (29 ppm) 7.4 x 10- -10

0 C2H2 200 cc (290 ppm) 7.4 x 10-10

0 CO 200 cc (290 ppm) 7.4 x 10-10 .

50% Air Only - 8.4 x 10-6

50% IIlH3  1 cc (1.4 ppm) 8.5 x 10-6

50% NH3  5 cc (7 ppm) 8.7 x 10-6

50% NH3  20 cc (29 ppm) 11.1 x 10-6

50% C2H2  200 cc (290 ppm) .8.5 x 10-6

50% CO 200 cc (290 ppm) 8.5 x 10-6

100% Air Only - 8.4 x 10-4

100% NH3 20 cc (29 ppm) 9.7 x 10- 4

100% NH3 100 cc (140 ppm) 12.6 x 10- 4

100% C2H2 200 cc (290 ppm) 8.4 x 10- 4

100% CO 200 cc (290 ppm) 8.4 x 104

MCDONNELL DOUGLAS CORPORATION.
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TABLE VI

GAS RESPONSES OF POLY(AMINOPHENYLACETYLE;NE)

R.H. GAS I VOLUME INJECTED TOTAL PRESSURE SEISOR CURRENT (AIPS

0 Air Only - 10 mm 2.3 x 10-10
0 Air Only - 760 m 2.3 x 10-10

0 NH3  1 cc (1.4 ppm) 25 x 10-10

0 NH3  5 cc (7 ppm) 98 x 10-10

0 C4 H8  20 cc (28.6 ppm) 2.3 x 10-10
0 C4H8  200 cc (290 ppm) 2.5 x 10-10
0 CO 200 cc (290 ppm) 2.3 x 10-10
0 Acrolein 100 p L (Liq) 2.5 x 10-10

50% Air Only - 7.8 x 10-6

50% NH3  1 cc (1.4 ppm) 7.9 x 10-6

50% NH3  5 cc (7 ppm) 8.9 x 10-6

50% NiH3  20 cc (29 ppm) 11.7 x 10-6

50% C4H8  200 cc (290 ppm) 7.8 x 10-6

50% CO 200 cc (290 ppm) 7.8 x 10-6

50% Acrolein 100 p (Liq) 7.8 x 10-6

100% Air Only - 8.4 x 10-4

100% NH3  20 cc (29 ppm) 9.7 x 10- 4

100% NH3  100 cc (140 ppm) 13.5 x 10-4

100% C4H8  200 cc (290 ppm) 8.4 x 10-4

100% CO 200 cc (290 ppm) 8.4 x 10-4

100% Acrolein 100 u L (Liq) 8.4 x 10-4

MCDONNELL DOUGLAS CORPORATION
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TABLE VII

GAS RESPONSES OF POLY(ETHYNYLFERROCENE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

0 Air Only - 10-1 m 1 3.4 x 10-9

0 Air Only - 760 mm 3.4 x 10O9

0 NiH3  1 cc (1.4 ppm) 45 x 10- 9

0 NH3 5 cc (7 ppm) 185 x 10- 9

0 C4H8  20 cc (29 ppm) 3.6 x 10-9

0 C4H8  100 cc (140 ppm) 4.1 x 10-9

0 CO 100 cc (140 ppm) 3.5 x 10- 9

0 CO 300 cc (430 ppm) 3.7 x 10-9

0 Acrolein 100 v L (Liq) 3.4 x 10-9

50% Air Only - 9.0 x 10-6

-6

50% NH3  20 cc (29 ppm) 9.7 x 10-

-650% CO 200 cc (290 ppm) 9.0 x 106

50% CO cc (570 ppm) 9.0 x 106

50% Acrolein 100 p L (Liq) 9.0 x 10-6

100% Air Only - 1.2 x 10-3

100% NH3  100 cc (140 ppm) 1.3 x 10- 3

100% CO 500 cc (715 ppm) 1.2 x 10-3

100% Acrolein 100 p L (Liq) 1.2 x 10-3

MCDONNELL DO.IOGLA8 CORPORATION
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TABLE VIII

GAS RESPONSES OF POLY(ETHYNYLPYRIDINE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

0 Air Only - 5 x 10-2 mm 1.0 x 10-12

0 Air Only - 760 mm 1.0 x 10-12

0 CO 100 cc 1.0 x 10-12

0 CO 200 cc 1.0 x 10-12

0 Air Only New Sensor(l) 1.0 x 10-12

0 NH3  100 cc 1.0 x 10-12

0 NH3  200 cc 1.0 x 10-12

0 C2H 2  100 cc 1.0 x 10-12

0 Acrolein 1000 u L (Liq) 1.0 x 10-12

50% Air Only - (1) 4.4 x 10-4

50% CO '10 cc 4.1 x 10-4

50% CO 50 cc 3.5 x 10-4

50% CO 100 cc 2.9 x 10-4

50% CO 150 cc 2.6 x 10-4

0% CO 200 cc 2.2 x 10-4

50% Air Only - (1) 8.8 x 10-5

50% NH3  10 cc 6.2 x 10-4

50% NH3  100 cc 30 x 10-4

50% iNH3  200 cc 36 x 10-4

50% Air Only - (1) 1.1 x 10-4

50% Acrolein 100 1 L (Liq) 1.1 x 10-4

50% Acrolein 1000 p L (Liq) 1.1 x 10-4

50% Air Only - (1) 9.8 x 10-5

50% C2H2  100 cc 9.8 x 10-5

50% C2H2  300 cc I 9.8 x 10-5

(1) New sensor means the sensor was cleaned of polymer and recoated in order
to minimize contamination from absorbed gases.

MCDONNELL DOUGLAS CORPORATION
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TABLE VIII (cont'd)

GAS RESPONSES OF POLY(ETHYNYLPYRIDINE)

R.M. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

100% Air Only - (1) 760 mm 2.1 x 10-4

100% NH3  200 cc 2.1 x 10-4

100% Air Only - (1) 4.8 x 10-4

100% CO 200 cc 4.8 x 10-4

100% Air Only - (1) 3.7 x 10-4

100% C2H2 200 cc 3.7 x 10-4

100% Air Only z, - (1) 5.1 x 10-4

100% Acrolein 100p L (Liq) 5.0 x 10-4

100% Acrolein 1000 p L (Liq) 5.0 x 10-4

MCDONNNELL DOUGLAS CORPOAT55ON
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TABLE IX

GAS RESPONSES OF POLY(ETHYNYLCARBORANE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

0 Air Only - 10-1 mm 1.1 x 10-9

0 Air Only 760 mm 1.1 x 10-9

0 NH3  10 cc 1.6 x 10-9

0 NH3  50 cc .4.6 x 10-9

0 NH3  100 cc 7/ x 10-a

0 Air Only - (1) 3.6 x 10o

0 CO 50 cc 3.7 x 10-9

0 CO 100 cc 3.9 x 10-9

0 CO 200 cc 4.1 x 10-9

0 Air Only - (1) 5 x 10-2mm 2.8 x 10-9

0 Acrolein 10 p L (Liq) > 2 m 2.8 x 10-9

990 Acrolein 100 p L (Liq) > 2 mm 2.8 x 10-

0 Air Only - (1) 760 mm 1.9 x 10-9

0 C2H2  100 cc 1.9 x 10-9

0 C2H2 500 cc 1.9 x 10-9

50% Air Only - (1) 1.6 x 10-5

50% CO 50 cc 1.6 x 10-5

50% CO 100 cc 0.50 x 10-5

50% CO 150 cc 0.19 x 10-5

50% CO 200 cc 0.20 x 10-5

50% Air Only - (1) 2.2 x 10-6

50% NH3  10 cc 2.7 x 10-6

50% NH3  50 cc 4.4 x 10-6

50% NH3  100 cc 13 x 10-6

50% NH3  200 cc .28 x 10-6

50% Air Only - (1) 2.5 x 10-6

50% Acrolein 10 p L (Liq) 2.5 x 10-6

50% Acrolein 100 v L (Liq) 2.5 x 10-6

50% Air Only - (1) 3.1 x 10- 6

(1) New sensor

MICDONNELL DOUOLAS CORPORATION
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TABLE IX (Cont'd)

GAS RESPONSES OF POLY(ETHYNYLCARBORAN E)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS)

50% C2H2  100 cc 760 mm 3.1 x 10-6

50% C2H2  500 cc 3.3 x 10-6

50% C2H2  1000 cc 3.4 x 10-6

100% Air Only - (1) 2.9 x 10-4

100% CO 100 cc 2.8 x 10-4 .

100% CO 300 cc 2.8 x 10-4

100% Air Only - (1) 1.8 x 10-4

100% NH3  10 cc 1.8 x 10-4

100% NH3  100 cc 2.2 x 10-4

100% NH3  200 cc 2.7 x 10-4

100% Air Only - (1) 1.9 x 10-4

100% Acrolein 10 p L (Liq) 1.9 x 10-4

100% Acrolein 1000u L (Liq) 1.9 x 10-4

100% Air Only - (1) 3.2 x 10-4

100% C2H2  500 cc 3.2 x 10-4

(1) New sensor

MCDONNELL DOUGLAS CORPORA5TION
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TABLE X

GAS RESPONSE OF POLY(ETHYLIDENETETRAMETHYL PYRIDAZINE)

R.H. GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT (AMPS

0 Air Only - 5 x 10-2 mm 0.2 x 10-11

0 Air Only - 760 mm 0.2 x 10-11

0 CO 100 cc 0.2 x 10-l1

0 CO 200 cc 0.3 x 10-11

0 CO 500 cc 0.3 x 10-11

0 Air Only - (1) 0.2 x 10-11

0 NH3  100 cc 0.4 x 10-11

0 NH3  200 cc 0.7 x 10-11

0 NH3  400 cc 1.0 x 10-11

0 Air Only - (1) 0.2 x 10-11

0 C2H2  200 cc 0.2 x 10-11

0 Air Only - (1) 5 x 10- 2 mm 0.2 x 10-11

0 Acrolein 100 v L (Liq) > 2 mm 0.2 x 10-11

0 Acrolein 1000 p L (Liq) > 2 mm 0.2 x 10-11

50% Air Only - (1) 760 mm 1.8 x 10-4

50% CO 100 cc 1.1 x 10-4

50% CO 200 cc x 10-4

50% Air Only - (1) 2.2 x 10-5

50% NH3  100 cc 8.9 x 10-5

50% NH3  200 cc 1.2 x 10-4

50% Air Only - (1) 1.8 x 10-5

50% C2H2  200 cc 1.8 x 10-5

50% Air Only - (1) 8.4 x 10-5

50% Acrolein 100 p L (Liq) 8.4 x 10-5

50% Acrolein 1000 p L (Liq) 8.4 x 10-5

(1) NdW sensor

MCDONNELL DOUGLAS CORPORATION
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TABLE X (Cont'd)

GAS RESPONSES OF POLY(ETHYLIDENETETRAMETHYL PYRIDAZINE)

R.H.- GAS VOLUME INJECTED TOTAL PRESSURE SENSOR CURRENT AMPS

100% Air Only - (1) 760 mm 2.2 x 10- 4

100% 1NH3 200 cc 2.3 x 10- 4

100% Air Only - (1) 4.5 x 10-4

100% CO 200 cc 4.3 x 10-4

100% Air Only - (1) 3.8 x 10- 4

100% C2H2 200 cc 3.8 x 10- 4

100% Air Only - (1) 8.9 x 10-4

100% Acrolein 1000 v L (Liq) 8.9 x 10-4

(1') New sensor -

FMCDONNELL DQOULA5 CORPORATION
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TABLE XI'

FIRE GAS RESPONSES AT 50% R.H.

POLYMER Io IF IMAX. TMAX. 160 1300

Poly(phenylacetylene) 3.4 x 10-6 8.5 x 10-6 120 x 10-6 10 Min. 7.4 x 10-6 3.4 x 10-6

Poly(nitrophenylacetylene) 1.1 x 10-5  9.7 x 10-5  104 x 10-5  10 Min. 8.8 x 10-5  1.1 x 10-5

Poly(formamidophenylacetylene) 8.5 x 10-6 63 x 10-6 415 x 10-6 15 Min. 24 x 10-6 8.5 x 10-6

Poly(aminophenylacetylene) 7.8 x 10- 6  47 x 10- 6  320 x 10-6 10 Min. 18 x 10-6 7.8 x 10-6

Poly(ethynylferrocene) 9.0 x 10-6 84 x 10-6 470 x 10-6 10 Min. 31 x 10-6 9.0 x 10- 6

Poly(ethynylcarborane) 2.7 x 10- 6  7.4 x 10- 6  102 x 10-6 10 Min. 8.0 x 10-6 3.7 x 10-6

Poly(ethynylpyridine) 1.7 x 10-5  6.1 x 10-5  74 x 10-5  10 Min. 5.8 x 10-5  1.9 x 10-5

Poly(ethylidenetetramethyl

pyridazine) 3.4 x 10-5  7.9 x 10-5  95 x 10-5  15 Min. 7.2 x 10-5  3.8 x 10-5

Symbols 10 = Sensor current before fire

IF = Current within 5 sec. of ignition

IMAX. = Maximum current observed

TMAX. = Time after ignition for max. current

160 = Current 60 min. after ignition

1300 = Current 300 min. after ignition
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Plate 2. Interior of Chamber Showing Sensing Electrode (Polymer Coated) Attached to Electrical Leads
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Plate 3. Close-up of incoated Sensing Electrode
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